Application Notes

SDS2000X-E Series

Jitter spectrum measurements with a digital oscilloscope

February 21, 2022

Clockworks Signal Processing released an application note that measures jitter using a SIGLENT XE series of oscilloscopes. The basic idea is simple enough – measure the clock edges and see if they are all exactly evenly spaced or if they change (jitter) over time. A non-uniform clock fed to an ADC or DAC will produce … Continued

Oscilloscope Feature and Options Table

January 14, 2022

SIGLENT has a number of oscilloscopes to help fit your application needs and budget. Here is a table of features and options of our most powerful oscilloscopes to help decide what is best for you. S – Standard, included O – Optional  (1) – Bode requires a SIGLENT SAG, SDG, or internal function generator to … Continued

Power Supply Design: Load Step Response with a SIGLENT DC Electronic Load

April 3, 2020

Building a power supply that can handle various loads without oscillating can be a challenge. Computational models and computer simulations can help get your design headed in the right direction, but physical testing is essential to proving the performance of your design. One method of quickly determining stability is to use a load step response. … Continued

Measuring Power Supply Control Loop Response with Bode Plot II

May 24, 2019

Introduction Stability is one of the most important characteristics in power supply design. Traditionally, stability measurements require expensive frequency response analyzers (FRA) which are not always available in a laboratory. SIGLENT has released Bode Plot Ⅱ features to the SIGLENT SDS1104X-E, SDS1204X-E, SDS2000X-E, SDS2000X Plus, and SDS5000X series of oscilloscopes. When combined with a Siglent … Continued

Bode Plot of a filter using an oscilloscope and function generator

February 26, 2019

A Bode plot is a method of graphically displaying the frequency response of a system or device-under-test (DUT). Commonly, the magnitude and phase response of the device are plotted with respect to frequency using a shared horizontal frequency axis as shown in the example below:   By showing both the magnitude and phase information on … Continued

Programming Example: Retrieve data from an XE series Oscilloscope using Kotlin

February 26, 2019

The SDS series of oscilloscopes all feature remote programming and data collection capabilities. They can be integrated easily into many automated test environments to ease the setup and data acquisition during testing. One of our helpful customers developed a nice programming example designed to set up and retrieve data from a SIGLENT SDS1202X-E Oscilloscope using Kotlin, … Continued

SDS FFT performance on low frequency signals

February 26, 2019

Like many modern oscilloscopes, the SIGLENT SDS series feature FFT math functions that calculate frequency information from the acquired voltage vs. time data. FFT stands for Fast Fourier Transform, and is a common method for determining the frequency content of a time-varying signal. Converting time domain data to the frequency domain makes measuring characteristics like … Continued