How to Extract Data from the File of Siglent Oscilloscope

Revise Record:

Date	Edition	Revise Reason	Revise content	Revise people
$2017 / 10 / 25$		SDS1000X SDS2000X		
$2018 / 03 / 01$		Added SDS1xx2X-E, SDS1xx4X-E		
$2018 / 06 / 12$		Added SDS5000X SDS2000X-E		
$2019 / 07 / 22$		Added SDS2000X Plus		
$2021 / 06 / 18$	Added Measure Logger, Sample Logger			
Note: When the file is first to be pigeonholed, 'Revise Reason' and ' Revise Content' are write to 'None'.				

Index

How to Extract Data from the File of Siglent Oscilloscope 1
Binary File of Waveform 3
SDS1000X || SDS2000X 3
Calculate the Sample Rate 6
Calculate the Vertical Offset 6
Calculate the Time Delay 6
Convert the Data to Voltage 7
SDS1xx2X-E Before 1.3.21 || SDS1xx4X-E 6.1.20~6.1.25. 8
Convert the Data to Voltage 11
SDS1xx2X-E After 1.3.21 || SDS1xx4X-E After 6.1.26 || SDS2000X-E After 1.1.8 || SDS5000X0.6.7~0.8.5R2 || SDS2000X+1.1.6~1.2.3.13
Convert the Data to Voltage 17
Calculate the Time Value of the Data. 17
SDS5000X After 0.8.6 || SDS2000X+ After1.2.6 18
Convert the Data to Voltage 23
Calculate the Time Value of the Data. 23
*.mlg File of Measure Logger 23
*.slg File of Sample logger. 26
Convert the Data to Voltage 29
Calculate the Time Value of Data 30

Binary File of Waveform

SDS1000X || SDS2000X

Update date: 2017-10-25

Table 1 Format of the Binary File

Parameter	Address	Description
wave_length	0x00-0x03	Reserved
mso_wave_length	0x04-0x07	Digital channels wave length
mso_ch_open_num	$0 \times 10-0 \times 13$	Wave length in units of sample points. 32-bit integer
mso_ch_open_stats	$0 \times 14-0 \times 23$	on/off status of d0-d15, 1 - ON, 0 - OFF32 -bit integer d0:0×14 d8:0×15 d1:0×16 d9:0×17 d2:0x18 d10: 19 d3:0x1a d11: $1 b$ d4: $0 \times 1 \mathrm{c}$ d12:0×1d d5: $0 \times 1 \mathrm{e}$ d13:0x1f d6: 0×20 d14:0×21 d7: 0×22 d15:0×23
ch1_volt_div_val	0xbc-0xbf	V/div value of CH 1 , in units of mV . Such as $2.48 \mathrm{mV} / \mathrm{div}$. 32-bit float point, little endian.
ch2_volt_div_val	0xc0-0xc3	$\mathrm{V} /$ div value of CH 2 .
ch3_volt_div_val	0xc4-0xc7	$\mathrm{V} /$ div value of CH 3 .
ch4_volt_div_val	0xc8-0xcb	$\mathrm{V} /$ div value of CH 4 .
ch1_vert_offset	0xdc-0xdf	Offset value of CH 1 , with the unit of pixel. Refer to "Calculate the Vertical Offset" to get the actual offset voltage. 32-bit signed integer, little endian.
ch2_vert_offset	0xe0-0xe3	Offset value of CH2.
ch3_vert_offset	0xe4-0xe7	Offset value of CH3.
ch4_vert_offset	0xe8-0xeb	Offset value of CH4.
ch1_on	0x100-0x103	on/off status of CH1, 1-ON, 0-OFF 32-bit signed integer, little endian.
ch2_on	0x104-0x107	on/off status of CH2.
ch3_on	0x108-0x10b	on/off status of CH3.
ch4_on	$0 \times 10 \mathrm{c}-0 \times 10 \mathrm{f}$	on/off status of CH 4 .
time_div	0x248-0x24b	T/div index. Refer to Table 2 for the details.

		32-bit signed integer, little endian.
time_delay	0x250-0×253	Time delay (Trigger delay) value, in units of pixel. Refer to "Calculate the Time Delay" to get the actual time delay. 32-bit signed integer, little endian.
data	0x1470-end	Data. Analog data first, and then digital data. Only data of the enabled channel(s) are stored to the file. 8-bit unsigned integer for analog data. 1-bit binary integer for digital data.

Table 2 T/div Table

Index	SDS1000X	SDS2000X
0		$1 \mathrm{~ns} / \mathrm{div}$
1	$2 \mathrm{~ns} / \mathrm{div}$	$2 \mathrm{~ns} /$ div
2	$5 \mathrm{~ns} /$ div	$5 \mathrm{~ns} /$ div
3	$10 \mathrm{~ns} /$ div	$10 \mathrm{~ns} /$ div
4	$20 \mathrm{~ns} /$ div	$20 \mathrm{~ns} /$ div
5	$50 \mathrm{~ns} /$ div	$50 \mathrm{~ns} /$ div
6	$100 \mathrm{~ns} / \mathrm{div}$	$100 \mathrm{~ns} / \mathrm{div}$
7	$200 \mathrm{~ns} / \mathrm{div}$	$200 \mathrm{~ns} / \mathrm{div}$
8	$500 \mathrm{~ns} / \mathrm{div}$	$500 \mathrm{~ns} / \mathrm{div}$
9	1 us/div	1 us/div
10	$2 \mathrm{us} / \mathrm{div}$	2 us/div
11	$5 \mathrm{us} / \mathrm{div}$	5 us/div
12	10 us/div	10 us/div
13	20 us/div	20 us/div
14	50 us/div	50 us/div
15	100 us/div	100 us/div
16	200 us/div	200 us/div
17	500 us/div	500 us/div
18	$1 \mathrm{~ms} /$ div	$1 \mathrm{~ms} / \mathrm{div}$
19	$2 \mathrm{~ms} /$ div	$2 \mathrm{~ms} / \mathrm{div}$
20	$5 \mathrm{~ms} / \mathrm{div}$	$5 \mathrm{~ms} / \mathrm{div}$
21	$10 \mathrm{~ms} / \mathrm{div}$	$10 \mathrm{~ms} / \mathrm{div}$
22	$20 \mathrm{~ms} / \mathrm{div}$	$20 \mathrm{~ms} / \mathrm{div}$
23	$50 \mathrm{~ms} / \mathrm{div}$	$50 \mathrm{~ms} / \mathrm{div}$
24	$100 \mathrm{~ms} / \mathrm{div}$	$100 \mathrm{~ms} / \mathrm{div}$
25	$200 \mathrm{~ms} / \mathrm{div}$	$200 \mathrm{~ms} / \mathrm{div}$
26	$500 \mathrm{~ms} / \mathrm{div}$	$500 \mathrm{~ms} / \mathrm{div}$
27	$1 \mathrm{~s} / \mathrm{div}$	$1 \mathrm{~s} / \mathrm{div}$
28	$2 \mathrm{~s} / \mathrm{div}$	$2 \mathrm{~s} / \mathrm{div}$
29	$5 \mathrm{~s} / \mathrm{div}$	$5 \mathrm{~s} / \mathrm{div}$
30	$10 \mathrm{~s} / \mathrm{div}$	$10 \mathrm{~s} / \mathrm{div}$
31	$20 \mathrm{~s} / \mathrm{div}$	$20 \mathrm{~s} / \mathrm{div}$
32	$50 \mathrm{~s} / \mathrm{div}$	$50 \mathrm{~s} / \mathrm{div}$

Table 3 V/div Table

Index	SDS1000X	SDS2000X
0	$500 \mathrm{uV} /$ div	$1 \mathrm{mV} /$ div
1	$1 \mathrm{mV} /$ div	$2 \mathrm{mV} /$ div
2	$2 \mathrm{mV} /$ div	$5 \mathrm{mV} /$ div

Index	SDS1000X	SDS2000X
3	$5 \mathrm{mV} / \mathrm{div}$	$10 \mathrm{mV} / \mathrm{div}$
4	$10 \mathrm{mV} / \mathrm{div}$	$20 \mathrm{mV} / \mathrm{div}$
5	$20 \mathrm{mV} / \mathrm{div}$	$50 \mathrm{mV} / \mathrm{div}$
6	$50 \mathrm{mV} / \mathrm{div}$	$100 \mathrm{mV} / \mathrm{div}$
7	$100 \mathrm{mV} / \mathrm{div}$	$200 \mathrm{mV} / \mathrm{div}$
8	$200 \mathrm{mV} / \mathrm{div}$	$500 \mathrm{mV} / \mathrm{div}$
9	$500 \mathrm{mV} / \mathrm{div}$	$1 \mathrm{~V} / \mathrm{div}$
10	$1 \mathrm{~V} /$ div	$2 \mathrm{~V} /$ div
11	$2 \mathrm{~V} /$ div	$5 \mathrm{~V} / \mathrm{div}$
12	$5 \mathrm{~V} /$ div	$10 \mathrm{~V} / \mathrm{div}$
13	$10 \mathrm{~V} / \mathrm{div}$	

Calculate the Sample Rate

```
sample_rate = (wave_length) /(hori_div_num*time_div_val)
[example]
hori_div_num = 14 # total horizontal divisions, on SDS2000X is 14
wave_length = 700 pts # length of each frame. Could be got by calculating the length of the
data section in the file
time_div_val = 50 ns/div # use the T/div index got from the binary file to search Table 2
So:
sample_rate = 700/(14*50e-9) = 1e9(Sa/s)
```


Calculate the Vertical Offset

```
vert_offset = (ch_vert_offset-220)*(ch_volt_div_val / pixel_per_div)
[example]
pixel_per_div = 50 # total display pixels in a vertical division, on SDS2000X is 50
ch_vert_offset = 270 # offset value, with the unit of pixel, got from the binary file
ch_volt_div_val = 50 mV/div # use the V/div index got from the binary file to search Table 3
```

So:
vert_offset $=(270-220) /(50 / 50)=50(\mathrm{mV})$

Calculate the Time Delay

[example]
pixel_per_div = 50 \# total display pixels in a horizontal division, on SDS2000X is 50
time_offset $=299$ \# offset value, with the unit of pixel, got from the binary file time_div_val $=50 \mathrm{~ns} / \mathrm{div} \#$ use the $\mathrm{T} / \mathrm{div}$ index got from the binary file to search Table 2

So:
hori_offset_time $=(299-349)^{*}(50 / 50)=-50(n s)$

Convert the Data to Voltage

```
voltage = (data-128) * ch_volt_div_val /1000/code_per_div + ch_vert_offset
[example]
code_per_div = 50 # total data code in a horizontal division, on SDS2000X is 25
data = 194 # got from the binary file
ch_volt_div_val = 5000 mV/div # V/div, in units of mV
ch_vert_offset = -7.7 V # vertical offset
```

So:
voltage $=(194-128) * 5000 / 1000 / 25+(-7.7)=5.5(\mathrm{~V})$

SDS1xx2X-E Before 1.3.21 || SDS1xx4X-E 6.1.20~6.1.25

Update date: 2018-3-1

Table 4 Format of the Binary File

Parameter	Address	Description
time_div	0xa84-0xa93	Time div (time base) value, Such as 2.48 ms/div. Unit of value, such as s from 0xa90-0xa93, refer to Table 6 for the details. Units of value's magnitude from 0xa8c-0xa8f, refer to Table 5 for the details. 64-bit float point, data of value from 0xa84-0xa8b
time_delay		
		Time delay (Trigger delay) value, Such as 2.48 ms. Unit of value, such as s from 0xaa0-0xaa3, refer to Table 6 for the details. Units of value's magnitude from 0xa9c-0xa9f, refer to Table 5 for the details. $64-b i t ~ f l o a t ~ p o i n t, ~ d a t a ~ o f ~ v a l u e ~ f r o m ~$
wave_length		
0xa94-0xa9b.		

		64-bit float point, data of value from 0xa0-0xa7.
ch2_on	0xc0-0xc3	on/off status of CH2 32-bit integer
ch2_volt_div_val	0x10c-0x11b	$\mathrm{V} /$ div value of CH 2 , such as $2.48 \mathrm{mV} / \mathrm{div}$. Unit of value, such as V from $0 \times 118-0 \times 11 b$, refer to Table 6 for the details. Units of value from $0 \times 114-0 \times 117$, refer to Table 5 for the details. 64-bit float point, data of value from $10 \mathrm{c}-0 \times 113$.
ch2_vert_offset	0x11c-0x12b	Offset value of CH 2 , such as 2.48 mV . Unit of value, such as V from $0 \times 128-0 \times 12 b$, refer to Table 6 for the details Units of value's magnitude from $0 \times 124-0 \times 127$, refer to Table 5 for the details. 64-bit float point, data of value from $0 \times 11 \mathrm{c}-0 \times 123$
ch3_on	$0 \times 13 \mathrm{c}-0 \times 13 \mathrm{f}$	on/off status of CH3 32-bit integer
ch3_volt_div_val	0x188-0x197	V/div value of CH3, such as $2.48 \mathrm{mV} / \mathrm{div}$. Unit of value, such as V from $0 \times 194-0 \times 197$, refer to Table 6 for the details. Units of value's magnitude from 0x190-0x193 refer to Table 5 for the details. 64-bit float point, data of value from 0x188-0x18f.
ch3_vert_offset	0x198-0x1a7	Offset value of CH3, such as 2.48 mV . Unit of value, such as V from $0 \times 1 a 4-0 \times 1 a 7$, refer to Table 6 for the details. Units of value's magnitude from $0 \times 1 a 0-0 \times 1 a 3$, refer to Table 5 for the details. 64-bit float point, data of value from 0x198-0x19f.
ch4_on	$0 \times 1 \mathrm{~b} 8-0 \times 1 \mathrm{bb}$	on/off status of CH4 32-bit integer
ch4_volt_div_val	0x204-0x213	$\mathrm{V} /$ div value of CH 4 , such as $2.48 \mathrm{mV} / \mathrm{div}$. Unit of value, such as V from $0 \times 210-0 \times 213$, refer to Table 6 for the details. units of value's magnitude from $0 \times 20 \mathrm{c}-0 \times 20 \mathrm{f}$, Refer to Table 5 for the details. 64-bit float point,data of value from $0 \times 204-0 \times 20 \mathrm{~b}$.
ch4_vert_offset	0x214-0x223	Offset value of CH4, such as 2.48 mV . Unit of value, such as V from $0 \times 220-0 \times 223$, refer to Table 6 for the details Units of value's magnitude from $0 \times 21 c-0 \times 21 f$,

		refer to Table 5 for the details $64-$ bit float point, data of value from $0 \times 214-0 \times 21 b$.
reserved	$0 \times 8 a 04-0 \times 8 a 07$	reserved
reserved	$0 \times 82 f 8-0 \times 82 f b$	reserved
reserved	$0 \times 83 f 4-0 \times 83 f 7$	reserved
reserved	$0 \times 83 f 8-0 \times 83 f b$	reserved
reserved	$0 \times 83 f c-0 \times 83 f f$	reserved
reserved	$0 \times 8400-0 \times 8403$	reserved
reserved	$0 \times 8404-0 \times 8407$	reserved
reserved	$0 \times 8408-0 \times 840 b$	reserved
reserved	$0 \times 840 \mathrm{c}-0 \times 840 f$	reserved
reserved	$0 \times 8414-0 \times 8413$	reserved
reserved	$0 \times 8418-0 \times 841 \mathrm{~b}$	reserved
reserved	$0 \times 841 \mathrm{c}-0 \times 841 \mathrm{f}$	reserved
reserved	$0 \times 8420-0 \times 8423$	reserved
reserved	$0 \times 8424-0 \times 8427$	reserved
reserved	$0 \times 8428-0 \times 842 b$	reserved
reserved	$0 \times 842 \mathrm{c-0} \mathrm{\times 842f}$	reserved
reserved	$0 \times 8430-0 \times 8433$	reserved
reserved	$0 \times 8 a 60-e n d$	Data from analog channel 1 to channel 4. Only data of the enabled channel(s) are stored to the file. data

Table 5 Magnitude Table

Index	SDS1000X-E
0	YOCTO
1	ZEPTO
2	ATTO
3	FEMTO
4	PICO
5	NANO
6	MICRO
7	MILLI
8	IU
9	KILO
10	MEGA
11	GIGA
12	TERA
13	PETA

Table 6 Units Table

Index	SDS1000X-E	Index	SDS1000X-E
0	V	14	S
1	A	15	SA
2	VV	16	PTS
3	AA	17	NULL
4	OU	18	DB
5	W	19	DBV
6	SQRT_V	20	DBA
7	SQRT_A	21	VPP
8	INTEGRAL_V	22	VDC
9	INTEGRAL_A	23	DBM
10	DT_V		
11	DT_A		
12	DT_DIV		
13	Hz		

Convert the Data to Voltage

voltage $=\left(\right.$ data-128) ${ }^{*}$ ch_volt_div_val /1000/code_per_div + ch_vert_offset
[example]

```
code_per_div = 50
\# total data code in a horizontal division, on SDS1000X-E is 25
data \(=194\)
\# got from the binary file
```

ch_volt_div_val $=5000 \mathrm{mV} /$ div \# V/div, in units of mV
ch_vert_offset = -7.7 V \# vertical offset
So:
voltage $=(194-128) * 5000 / 1000 / 25+(-7.7)=5.5 \mathrm{~V}$

SDS1xx2X-E After 1.3.21 || SDS1xx4X-E After 6.1.26 ||

SDS2000X-E After 1.1.8 || SDS5000X 0.6.7~0.8.5R2

SDS2000X+ 1.1.6~1.2.3

Update date: 2018-6-15

Table 7 Format of the Binary File

Parameter	Address	Description
ch1_on	0x00-0x03	on/off status of CH1, 1-ON, 0-OFF 32-bit signed integer.
ch2_on	0x04-0x07	on/off status of CH2, 1-ON, 0-OFF 32-bit integer
ch3_on	0x08-0x0b	on/off status of CH3, 1-ON, 0-OFF 32-bit integer
ch4_on	0x0c-0x0f	on/off status of CH4, 1-ON, 0-OFF 32-bit integer
ch1_volt_div_val	0x10-0x1f	$\mathrm{V} /$ div value of CH 1 , such as $2.48 \mathrm{mV} /$ div. Unit of value, such as V from $0 \times 1 \mathrm{c}-0 \times 1 \mathrm{f}$, refer to Table 8 for the details. Units of value's magnitude (MICRO) from $0 \times 18-0 \times 1 \mathrm{~b}$, refer to Table 8 for the details. 64-bit float point, data of value from $0 \times 10-0 \times 17$.
ch2_volt_div_val	0x20-0x2f	$\mathrm{V} /$ div value of CH 2 , such as $2.48 \mathrm{mV} /$ div. Unit of value, such as V from $0 \times 2 \mathrm{c}-0 \times 2 \mathrm{f}$, refer to Table 9 for the details. Units of value's magnitude (MICRO) from $0 \times 28-0 \times 2 b$, refer to Table 8 for the details. 64-bit float point, data of value from $0 \times 20-0 \times 27$.

ch3_volt_div_val	0x30-0x3f	V/div value of CH3, such as $2.48 \mathrm{mV} / \mathrm{div}$. Unit of value, such as V from 0x3c-0x3f, refer to Table 9 for the details. Units of value's magnitude (MICRO) from $0 \times 38-0 \times 3 b, ~ r e f e r ~ t o ~ T a b l e ~$
ch4_vor the details.		
64-bit float point, data of value from		
$0 \times 30-0 x 37$.		

digital_on	0x90-0x93	on/off status of digital, 1 - ON, 0 - OFF 32-bit integer
d0_d15_on	0x94-0xd3	on/off status of d0-d15, 1-ON, 0-OFF 32-bit integer d0:0x94-0x97 d8:0xb4-0xb7 d1:0x98-0x9b d9:0xb8-0xbb d2:0x9c-0x9f d10:0xbc-0xbf d3:0xa0-0xa3 d11:0xc0-0xc3 d4: 0xa4-0xa7 d12:0xc4-0xc7 d5: 0xa8-0xab d13:0xc8-0xcb d6: 0xac-0xaf d14:0xcc-0xcf d7: 0xb0-0xb3 d15:0xd0-0xd3
time_div	0xd4-0xe3	Time div (time base) value, Such as 2.48 ms/div. Unit of value, such as s from 0xe0-0xe3, refer to Table 9 for the details. Units of value's magnitude (MICRO) from 0xdc-0xdf, refer to Table 8 for the details. 64-bit float point, data of value from $0 x d 4-0 x d b$.
time_delay	0xe4-0xf3	Time delay (Trigger delay) value, Such as 2.48 ms . Unit of value, such as s from 0xf0-0xf3, refer to Table 9 for the details. Units of value's magnitude (MICRO) from 0xec-0xef, refer to Table 8 for the details. 64-bit float point, data of value from 0xe4-0xeb
wave_length	0xf4-0xf7	Wave length of the data points for analog channel. 32-bit integer
Sample_rate	0xf8-0x107	Sample Rate value for analog channel, Such as 500 M Sa /s. Unit of value, such as Sa from 0x104-0x107, refer to Table 9 for the details. Units of value's magnitude (MEGA) from $0 \times 100-0 \times 103$, Refer to Table 8 for the details. 64-bit float point, data of value from 0xf8-0xff.

digital_wave_length	0x108-0x10b	Wave length of the data points for digital. 32-bit integer
digital_sample_rate	0x10c-0x11b	Sample Rate value for digital, Such as 500M Sa/s. Unit of value, such as Sa from $0 \times 118-0 \times 11 b$, refer to Table 9 for the details. Units of value's magnitude (MEGA) from $0 \times 114-0 \times 117$, Refer to Table 8 for the details. 64-bit float point, data of value from $0 \times 10 \mathrm{c}-0 \times 113$.
reserved	$0 \times 11{ }^{\sim}$	reserved
...
reserved	~0x7ff	reserved
Wave_data	0x800-end	Data from CH1 to D15. Only data of the enabled channel(s) are stored to the file. I.E. if there are data of all channels(Ch1 to D15), and wave_length from 0xf4-0xf7 is 700(0x2bc). Data of CH 1 is from 0×800 to $0 \times a b b$. Data of CH 2 is from $0 x a b c$ to $0 x d 77$. CH 3 and CH 4 are the same. Next block is the data of DO. The data length (digital_wave_length) from $0 \times 108-0 \times 10 \mathrm{~b}$ is 1400. Data of D0 is from $0 \times 12 \mathrm{f0}$ to 0×1867. D1~D15 are the same.

Table 8 Magnitude Table

Index	Magnitude	Index	Magnitude
0	YOCTO	7	MILLI
1	ZEPTO	8	IU
2	ATTO	9	KILO
3	FEMTO	10	MEGA
4	PICO	11	GIGA
5	NANO	12	TERA
6	MICRO	13	PETA

Table 9 Units Table

Index	Unit	Index	Unit

Index	Unit	Index	Unit
0	V	12	DT_DIV
1	A	13	Hz
2	VV	14	S
3	AA	15	SA
4	OU	16	PTS
5	W	17	NULL
6	SQRT_V	18	DB
7	SQRT_A	19	DBV
8	INTEGRAL_V	20	DBA
9	INTEGRAL_A	21	VPP
10	DT_V	22	VDC
11	DT_A	23	DBM

Convert the Data to Voltage

```
voltage = (data-128) * ch_volt_div_val /1000/code_per_div + ch_vert_offset
[example]
code_per_div = 25 # total data code in a horizontal division, on SDS1000X is 25
data = 194 # got from the binary file
ch_volt_div_val = 5000 mV/div # V/div, in units of mV
ch_vert_offset = -7.7 V # vertical offset
So:
voltage =(194-128)*5000/1000/25+(-7.7)=5.5 V
```


Calculate the Time Value of the Data

```
time value \((S)=-(\) time_div *grid / 2 )+index*(1/Sample_rate)
```

[example]
grid = $14 \quad$ \# The grid numbers in horizontal direction
time_div $=2$ us \# s/div, in units of us
Sample_rate $=1 \mathrm{GSa} / \mathrm{s} \quad \# \mathrm{Sa} / \mathrm{s}$, in units of GSa/s

So:
The time value of the first point: -(2e-6*14/2)+0* $(1 / 1 e 9)=-14 e-6 \mathrm{~s}$.
The time value of the second point: -(2e-6*14/2)+1*(1/1e9) =-14.001e-6 s .

SDS5000X After 0.8.6 || SDS2000X+ After1.2.6

Update date: 2019-7-22

Table 7 Format of the Binary File

Parameter	Address	Description
version	0x00-0x03	Version number of the file. 0 or 1, use V2.0 to extract data. 2, use V3.0 to extract data.
ch1_on	0x04-0x07	on/off status of CH1, 1-ON, 0-OFF 32-bit signed integer.
ch2_on	0x08-0x0b	on/off status of CH2, 1-ON, 0-OFF 32-bit integer
ch3_on	0x0c-0xOf	on/off status of CH3, 1-ON, 0-OFF 32-bit integer
ch4_on	$0 \times 10-0 \times 13$	on/off status of CH4, 1-ON, 0-OFF 32-bit integer
ch1_volt_div_val	0x14-0x3b	V/div value of CH 1 , such as $2.48 \mathrm{mV} /$ div. Unit of value, such as V from $0 \times 20-0 \times 3 b$, refer to Table 9 for the details. Units of value's magnitude (MICRO) from $0 \times 1 \mathrm{c}-0 \times 1 \mathrm{f}$, refer to Table 8 for the details. 64-bit float point, data of value from $0 \times 14-0 \times 1 b$.
ch2_volt_div_val	0x3c-0x63	V/div value of CH 2 , such as $2.48 \mathrm{mV} /$ div. Unit of value, such as V from $0 \times 48-0 \times 63$, refer to Table 9 for the details. Units of value's magnitude (MICRO) from $0 \times 44-0 \times 47$, refer to Table 8 for the details. 64-bit float point, data of value from $0 \times 3 \mathrm{c}-0 \times 43$.

ch3_volt_div_val	0x64-0x8b	V/div value of CH3, such as $2.48 \mathrm{mV} / \mathrm{div}$. Unit of value, such as V from 0x70-0x8b, refer to Table 9 for the details. Units of value's magnitude (MICRO) from 0x6c-0x6f, refer to Table 8 for the details. $64-b i t ~ f l o a t ~ p o i n t, ~ d a t a ~ o f ~ v a l u e ~ f r o m ~$
0x64-0x6b.		

digital_on	$0 \times 154-0 \times 157$	on/off status of digital, 1 - ON, 0 - OFF 32-bit integer
d0_d15_on	0x158-0x197	on/off status of d0-d15, 1-ON, 0-OFF 32-bit integer d0:0x158-0x15b d8: $0 \times 178-0 \times 17 b$ d1: $0 \times 15 \mathrm{c}-0 \times 15 \mathrm{f} \quad \mathrm{d} 9: 0 \times 17 \mathrm{c}-0 \times 17 \mathrm{f}$ d2: $0 \times 160-0 \times 163$ d10: $0 \times 180-0 \times 183$ d3: $0 \times 164-0 \times 167$ d11: $0 \times 184-0 \times 187$ d4: $0 \times 168-0 \times 16 b \quad d 12: 0 \times 188-0 \times 18 b$ d5: $0 \times 16 \mathrm{c}-0 \times 16 \mathrm{f} \quad \mathrm{d} 13: 0 \times 18 \mathrm{c}-0 \times 18 \mathrm{f}$ d6: $0 \times 170-0 \times 173$ d14: $0 \times 190-0 \times 193$ d7: 0x174-0x177 d15: 0x194-0x197
time_div	0x198-0x1bf	Time div (time base) value, Such as 2.48 $\mathrm{ms} / \mathrm{div}$. Unit of value, such as s from $0 \times 1 a 3-0 \times 1 b f$, refer to Table 9 for the details. Units of value's magnitude (MICRO) from $0 \times 1 a 0-0 \times 1 a 3$, refer to Table 8 for the details. 64-bit float point, data of value from 0x198-0x19f.
time_delay	$0 \times 1 \mathrm{c} 0-0 \times 1 \mathrm{e} 7$	Time delay (Trigger delay) value, Such as 2.48 ms. Unit of value, such as s from $0 \times 1 \mathrm{cc}-0 \times 1 \mathrm{e} 7$, refer to Table 9 for the details. Units of value's magnitude (MICRO) from $0 \times 1 \mathrm{c} 8-0 \times 1 \mathrm{cb}$, refer to Table 8 for the details. 64-bit float point, data of value from $0 \times 1 \mathrm{c} 0-0 \times 1 \mathrm{c} 7$
wave_length	$0 \times 1 \mathrm{e} 8-0 \times 1 \mathrm{eb}$	Wave length of the data points for analog channel. 32-bit integer
Sample_rate	0x1ec-0x213	Sample Rate value for analog channel, Such as 500 M Sa /s. Unit of value, such as Sa from $0 \times 1 f 8-0 \times 213$, refer to Table 9 for the details. Units of value's magnitude (MEGA) from $0 x 1 f 4-0 x 1 f 7$, Refer to Table 8 for the details. 64-bit float point, data of value from 0x1ec-0x1f3.

digital_wave_length	0x214-0x217	Wave length of the data points for digital. 32-bit integer
digital_sample_rate	0x208-0x23f	Sample Rate value for digital, Such as 500M Sa / s. Unit of value, such as Sa from $0 \times 214-0 \times 23 f$, refer to Table 9 for the details. Units of value's magnitude (MEGA) from $0 \times 210-0 \times 213$, Refer to Table 8 for the details. 64-bit float point, data of value from 0x208-0x20f.
ch1_probe	$0 \times 240-0 \times 247$	Probe value of CH1,64-bit float point
ch2_probe	0x248-0x24f	Probe value of CH2,64-bit float point
ch3_probe	0x250-0x257	Probe value of CH3,64-bit float point
ch4_probe	0x258-0x25f	Probe value of $\mathrm{CH} 4,64$-bit float point
Date width	0x260	Data width of the waveform data, $0-8$-bit, 1 -16-bit, 8-bit unsigned integer
reserved	0x261~	reserved
		...
reserved	~0x7ff	reserved
Wave_data	0x800-end	Data from CH1 to D15. Only data of the enabled channel(s) are stored to the file. I.E. If there are data of all channels(Ch1 to D15), wave_length from $0 \times 1 \mathrm{e} 8-0 \times 1 \mathrm{eb}$ is

		700 ($0 \times 2 \mathrm{bc}$).,and data width from 0×260 is 0 (8-bit). Data of CH1 is from 0×800 to $0 \times a b b$. Data of CH 2 is from 0xabc to 0xd77. CH3 and CH4 are the same. Next block is the data of DO. The data length (digital_wave_length) from $0 \times 214-0 \times 217$ is 1400. Data of DO is from 0x12f0 to 0x1867. D1~D15 are the same.

Table 8 Magnitude Table

Index	Magnitude	Index	Magnitude
0	YOCTO	9	KILO
1	ZEPTO	10	MEGA
2	ATTO	11	GIGA
3	FEMTO	12	TERA
4	PICO	13	PETA
5	NANO	14	EXA
6	MICRO	15	ZETTA
7	MILLI	16	YOTTA
8	IU		

Table 9 Units Table
First 32-bit is basic unit type:

Index	Unit	Index	Unit
0	Is composed of V,A and S.	8	DT_DIV
1	DBV	9	PTS
2	DBA	10	NULL_SENSE
3	DB	11	DEGREE
4	VPP	12	PERCENT
5	VDC		
6	DBM		
7	SA		

The next 64-bit describes the power of V , in which the first half represents the numerator and the next half represents the denominator.

The next 64-bit describes the power of A, in which the first half represents the numerator and the next half represents the denominator.

The next 64-bit describes the power of S, in which the first half represents the numerator and the next half represents the denominator.

For example, $\{0,1,1,0,1,0,1\}$ represents the unit V. The first number 0 means the unit is composed of V, A and S . The second number 1 and the third number 1 mean the power of V is $1 / 1$. The fourth number 0 and the fifth number 1 mean the power of A is $0 / 1$. The sixth number 0 and
the seventh number 1 mean the power of S is $0 / 1$. So the unit is V .

Convert the Data to Voltage

```
voltage = (data-128) * ch_volt_div_val /1000/code_per_div + ch_vert_offset
[example]
code_per_div = 25 # total data code in a horizontal division, on SDS1000X is 25
data = 194 # got from the binary file
ch_volt_div_val = 5000 mV/div # V/div, in units of mV
ch_vert_offset = -7.7 V # vertical offset
So:
voltage =(194-128)*5000/1000/25+(-7.7)=5.5 V
```


Calculate the Time Value of the Data

```
time value(S) = -( time_div *grid /2)+index*(1/ Sample_rate)
```

[example]
grid $=14 \quad$ \# The grid numbers in horizontal direction
time_div $=2$ us \# s/div, in units of us
Sample_rate $=1 \mathrm{GSa} / \mathrm{s} \quad \# \mathrm{Sa} / \mathrm{s}$, in units of GSa/s

So:
The time value of the first point: -(2e-6*14/2)+0* $(1 / 1 e 9)=-14 e-6 s$.
The time value of the second point: -(2e-6*14/2)+1*(1/1e9) =-14.001e-6 s.

*.mlg File of Measure Logger

Table 10 Format of the Measure Logger File

Parameter	Address	Description
file_type	0x00-0x07	Type of the file, the value is always "MSLG". Array of 8 char.
file_version	$0 \times 08-0 \times 0 \mathrm{~b}$	Version number of the file. $32-b i t ~ u n s i g n e d ~ i n t e g e r . ~$ $0: ~ V 1.0 ~$
model_number	0x0c-0x2b	Model number of the product. Array of 32 char.

serial_number	$0 \times 2 \mathrm{c}-0 \times 4 \mathrm{~b}$	Serial number of the product. Array of 32 char.	
software_version	0x4c-0x6b	Version of the software. Array of 32 char.	
start_time	$0 \times 6 \mathrm{c}-0 \times 87$	Start time of logging. Array of 7 32-bit unsigned integer.	
		Index	Element
		0	Year
		1	Mouth
		2	Day
		3	Hour
		4	Minute
		5	Second
		6	Millisecond
stop_time	0x88-0xa3	Stop tim Array of	ed integer.
		Index	Element
		0	Year
		1	Mouth
		2	Day
		3	Hour
		4	Minute
		5	Second
		6	Millisecond
log_interval_ms	0xa4-0xa7	Logging interval in milliseconds. 32-bit unsigned integer.	
points_number	0xa8-0xab	Points per trace. 32-bit unsigned integer.	
traces_number	0xac-0xaf	Number of enabled traces. 32-bit unsigned integer.	
traces_switch	0xb0-0xcf	Trace switch status. Array of 8 32-bit unsigned integer. $\begin{aligned} & \text { 0: OFF } \\ & \text { 1: ON } \end{aligned}$	
source	0xd0-0xef	Source of log. Array of 8 32-bit unsigned integer. 0 : Measure 1: Meter	
measure_source_A	0xf0-0x10f	The first source of measurement. Array of 8 32-bit unsigned integer. Only for the measure logger on scope to recall, refer to the parameter "measure_source_A_string" for details.	

measure_source_B	$0 \times 110-0 \times 12 \mathrm{f}$	The second source of measurement. Array of 832 -bit unsigned integer. Only for the measure logger on scope to recall, refer to the parameter "measure_source_B_string" for details.			
measure_type	$0 \times 130-0 \times 14 \mathrm{f}$	Type of measurement. Array of 8 32-bit unsigned integer. Only for the measure logger on scope to recall, refer to the parameter "measure_type_string" for details.			
unit_type	0x150-0x16f	Unit. Array of 8 32-bit unsigned integer. Only for the measure logger on scope to recall, refer to the parameter "unit_string" for details.			
precision	0x170-0x18f	Precision of data. Array of 8 32-bit signed integer. Only for the measure logger on scope to recall.			
precision_type	0x190-0x1af	Type of precision. Array of 8 32-bit unsigned integer. Only for the measure logger on scope to recall.			
source_string	0x1b0-0x1ef	Source of log. Array of 8 arrays of 8 char.			
measure_source_A_string	0x1f0-0x22f	The first source of measurement. Array of 8 arrays of 8 char.			
measure_source_B_string	0x230-0x26f	The second source of measurement. Array of 8 arrays of 8 char.			
measure_type_string	0x270-0x2ef	Type of measurement. Array of 8 arrays of 16 char.			
unit_string	0x2f0-0x32f	Unit. Array of 8 arrays of 8 char.			
Reserved.	0x330-0x7cf	Reserved.			
Data	0x7d0-End	Log data. Array of 32-bit float. Example: Status of traces:			
		Trace1	Trace2	Trace3	Trace4
		OFF	ON	OFF	ON
		Data:			
		Index		Data	
		0 (Offset = 0x7d0)		Trace2_data[0]	
		1		Trace4_data[0]	
		2		Trace2_data[1]	
		3		Trace4_data[1]	

		4	Trace2_data[2]
	5	Trace4_data[2]	
	$\cdots \cdots$	$\cdots \cdots$	

*.slg File of Sample logger

Table 11 Format of the Sample Logger File.

Parameter	Address	Description
product_info	$0 \times 00-0 \times 7 \mathrm{f}$	Product information. See the Table 12 Format of Product Information. (Base offset = 0x00) for details.
record_info	$0 \times 80-0 \times 17 \mathrm{f}$	Record information. See the Table 13 Format of Record Information. (Base offset = 0x80)
Reserved	$0 \times 180-0 \times 27 \mathrm{f}$	Reserved.
ch_1_info	$0 \times 280-0 \times 37 \mathrm{f}$	Channel 1 information. See the Table 14 Format of Channel Information
ch_2_info	$0 \times 380-0 \times 47 \mathrm{f}$	Channel 2 information.
ch_3_info	$0 \times 480-0 \times 57 \mathrm{f}$	Channel 3 information.
ch_4_info	$0 \times 580-0 \times 67 \mathrm{f}$	Channel 4 information.
Reserved	$0 \times 1001000-$-End	Due to memory limitation, data is written by sector, see the Table 15 Format of Sector Information.
Data		

Table 12 Format of Product Information. (Base offset $=0 \times 00$)

Parameter	Offset	Description
file_type	$0 \times 00-0 \times 07$	Type of file. Array of 8 char. The value is always "SPLG".
file_version	$0 \times 08-0 x 0 \mathrm{~b}$	Version number of the file. $0:$ V1.0
model_number	$0 x 0 \mathrm{c}-0 \times 2 \mathrm{~b}$	Model number of the product. Array of 32 char.
serial_number	$0 \times 2 \mathrm{c}-0 \times 4 \mathrm{~b}$	Serial number of the product. Array of 32 char.
software_version	$0 \times 4 \mathrm{c}-0 \times 6 \mathrm{~b}$	Version of the software. Array of 32 char..
Reserved	$0 \times 6 \mathrm{c}-0 \times 7 \mathrm{f}$	Reserved.

Table 13 Format of Record Information. (Base offset $=0 \times 80$)

Parameter	Offset	Description		
enable_ch_num	0x00-0x03	Number of enabled channels. 32-bit unsigned integer.		
sector_num	0x04-0x07	Number of sectors per channel. 32-bit unsigned integer.		
tdiv_value	0x08-0x0f	Timebase when log start. (s/div) 64-bit double precision floating point.		
sample_rate	$0 \times 10-0 \times 17$	Sample rate. (Sa/s) 64-bit double precision floating point.		
record_time	0x18-0x1f	Recorded time in second. 64-bit double precision floating point.		
points_number	0x20-0x27	Number of data points per channel. 64-bit unsigned integer.		
start_sector_offset	$0 \times 28-0 \times 2 \mathrm{f}$	File offset of the first sector. 64-bit unsigned integer.		
end_sector_offset	0x30-0x37	File offset of the last sector. 64-bit unsigned integer.		
start_data_offset	0x38-0x3f	The start offset of the data area. 64-bit unsigned integer.		
end_data_offset	$0 \times 40-0 \times 47$	The end offset of the data area. 64-bit unsigned integer.		
data_bit_index	$0 \times 48-0 \times 4 b$	Bits number of data. 32-bit unsigned integer.		
start_time	$0 \times 4 \mathrm{c}-0 \times 67$	Start time of logging. Array of 7 32-bit unsigned integer.		
		Index		
		0		
		1	M	th
		2		
		3		
		4		ute
		5		ond
		6		isecond
Reserved	0x68-0xff	Reserved.		

Table 14 Format of Channel Information
(Base offset: CH1 $=0 \times 280, \mathrm{CH} 2=0 \times 380, \mathrm{CH} 3=0 \times 480, \mathrm{CH} 4=0 \times 580$)

Parameter	Offset	Description
ch_act	$0 \times 00-0 \times 03$	Switch status of channel. 32-bit unsigned integer.

		$\begin{aligned} & \text { 0: OFF } \\ & \text { 1: ON } \end{aligned}$
probe_index	0x04-0x07	Probe value index of channel. 32-bit unsigned integer.
probe_custom_val	0x08-0x0f	Custom configured probe of channel. 64-bit double precision floating point
vdiv_val	$0 \times 10-0 \times 17$	$\mathrm{V} / \mathrm{div}$ value of channel. 64-bit double precision floating point.
vpos_val	$0 \times 18-0 \times 1 \mathrm{f}$	Offset value of channel. 64-bit double precision floating point.
value_per_adc_code	$0 \times 20-0 \times 27$	Vertical value per ADC code. 64-bit double precision floating point.
zero_adc_code	$0 \times 28-0 \times 2 \mathrm{~b}$	Reference code of value zero. 32-bit unsigned integer.
unit_index	$0 \times 2 \mathrm{c}-0 \times 2 \mathrm{f}$	Type of channel unit. 32-bit unsigned integer. 0: V 1: A
unit_string	0x30-0x37	Unit of channel. Array of 8 char.
Reserved	0x38-0xff	Reserved.

Table 15 Format of Sector Information

Parameter	Offset	Description
sector_index	$0 \times 00-0 \times 07$	Sector index. 64 -bit unsigned integer.
data_index_start	$0 \times 08-0 \times 0$ f	Data index of the first data in current sector. 64 -bit unsigned integer.
data_index_end	$0 \times 10-0 \times 17$	Data index of the last data in current sector. 64 -bit unsigned integer.
data_num	$0 \times 18-0 \times 1 \mathrm{f}$	Number of data in current sector. 64 -bit unsigned integer.
ch	0x20-0x23	Channel. 32 -bit unsigned integer.
Reserved	$0 \times 24-0 \times 3 \mathrm{~b}$	Reserved.
Data	$0 \times 3 \mathrm{c}-0 \times 9 f f$	Waveform data. 8-bit or 16-bit unsinged integer. 2500 points per sector.

Example:
ch_act[0] = OFF \#Channel 1 is off.
ch_act[1] = ON \#Channel 2 is on.
ch_act[2] = OFF \#Channel 3 is off.
ch_act[3] = ON \#Channel 4 is on.
data_bit_index = 8 \#8bit per point. So the size of sector is 2560 bytes.
start_sector_offset $=0 \times 1001000$
points_number $=3000$ \#2500 points are in the first sector, and the other 500 points are in the second sector. The left space in the second sector will be filled with zero.

So the file structure is shown in Figure 1.

Product information	
Record information	
Reserved	
Channel 1 information	
Channel 2 information	
Channel 3 information	
Channel 4 information	
Reserved	
Channel 2 Sector \#1	
Channel 4 Sector\#1	
Channel 2 Sector \#2	
Channel 4 Sector \#2	
......	

Channel 2 Sector \#1 Sector information	$0 \times 1001000+0 \times 0000$
Channel 2 Wave data \#1	$0 \times 1001000+0 \times 003 \mathrm{C}$
Channel 2 Wave data \#2	$0 \times 1001000+0 \times 003 \mathrm{D}$
Channel 2 Wave data \#3	$0 \times 1001000+0 \times 003 \mathrm{E}$
$\ldots .$.	$0 \times 1001000+0 \times 003 F$
Channel 2 Wave data \#2500	$0 \times 1001000+0 \times 09 \mathrm{FF}$

Channel 2 Sector \#2 Sector information	$0 \times 1002400+0 \times 0000$
Channel 2 Wave data \#2501	$0 \times 1002400+0 \times 003 C$
$\ldots \ldots$	$0 \times 1002400+0 \times 003 \mathrm{D}$
Channel 2 Wave data \#3000	$0 \times 1002400+0 \times 0230$
Zero	$0 \times 1002400+0 \times 0231$
$\ldots .$.	$0 \times 1002400+0 \times 0232$

Figure 1 Example for Sample Logger File Structure

Convert the Data to Voltage

$$
\text { voltage }=(\text { data }- \text { zero_adc_code }) \cdot \text { value_per_adc_code }- \text { vpos_val }
$$

Example:
unit_string = "V"
data $=145$
zero_adc_code = 128
value_per_adc_code $=0.04 \mathrm{~V}$
vpos_val =-1.0 V

So:

$$
\text { voltage }=(145-128) \times 0.04-(-1.0)=1.68 \mathrm{~V}
$$

Calculate the Time Value of Data

> time_value = data_index/sample_rate

Where:
data_index $=$ sector_index $\cdot 2500+$ data_index_in_sector

Example:
sector_index = 10
data_index_in_sector $=8$
sample_rate $=25000 \mathrm{Sa} / \mathrm{s}$
So:

$$
\begin{gathered}
\text { data_index }=10 \times 2500+8=25008 \\
\text { time_value }=25008 \div 25000=1.00032 \mathrm{~s}
\end{gathered}
$$

