Mechanical Calibration Kit

Data Sheet EN03B

SIGLENT TECHNOLOGIES CO., LTD.

Introduction

Mechanical calibration kit contains individual standards to characterize systematic errors, used to calibrate scalar or vector network analyzers.

SIGLENT supplies mechanical calibration kits with 2.4mm, 2.92mm, 3.5mm and Type N coaxial connectors, as well as K-band waveguide calibration kit.

Model* ¹ * ²	Frequency	Type* ³	Connector	Impendence	Similar
F503ME	DC - 4.5 GHz	OSLT	Type N - Male	50 Ω	85032B/E
F503FE	DC - 4.5 GHz	OSLT	Type N - Female	50 Ω	85032B/E
F603ME	DC - 4.5 GHz	OSLT	3.5mm - Male	50 Ω	85033E
F603FE	DC - 4.5 GHz	OSLT	3.5mm - Female	50 Ω	85033E
F504MS	DC - 9 GHz	OSLT	Type N - Male	50 Ω	85032F
Y504MS	DC - 9 GHz	OSLT	Type N - Male	50 Ω	85032F
F504FS	DC - 9 GHz	OSLT	Type N - Female	50 Ω	85032F
Y504FS	DC - 9 GHz	OSLT	Type N - Female	50 Ω	85032F
F504TS	DC - 9 GHz	OSLT	Type N - Male AND Female	50 Ω	85032F
F604MS	DC - 9 GHz	OSLT	3.5mm - Male	50 Ω	85033E
F604FS	DC - 9 GHz	OSLT	3.5mm - Female	50 Ω	85033E
F604TS	DC - 9 GHz	OSLT	3.5mm - Male AND Female	50 Ω	85033E
F505MS	DC - 18 GHz	OSLT	Type N - Male	50 Ω	85054D
F505FS	DC - 18 GHz	OSLT	Type N - Female	50 Ω	85054D
F505TS	DC - 18 GHz	OSLT	Type N - Male AND Female	50 Ω	85054D
F606MS	DC - 26.5 GHz	OSLT	3.5mm - Male	50 Ω	85052D
Y606MS	DC - 26.5 GHz	OSLT	3.5mm - Male	50 Ω	85052D
F606FS	DC - 26.5 GHz	OSLT	3.5mm - Female	50 Ω	85052D
Y606FS	DC - 26.5 GHz	OSLT	3.5mm - Female	50 Ω	85052D
F606TS	DC - 26.5 GHz	OSLT	3.5mm - Male AND Female	50 Ω	85052D
Y707MS	DC - 40 GHz	OSLT	2.92mm - Male	50 Ω	8770D
Y707FS	DC - 40 GHz	OSLT	2.92mm - Female	50 Ω	8770D
F707TS	DC - 40 GHz	OSLT	2.92mm-Male AND Female	50 Ω	8770S
F808MS	DC - 50 GHz	OSLT	2.4mm - Male	50 Ω	85056D
Y808MS	DC - 50 GHz	OSLT	2.4mm - Male	50 Ω	85056D
F808FS	DC - 50 GHz	OSLT	2.4mm - Female	50 Ω	85056D
Y808FS	DC - 50 GHz	OSLT	2.4mm - Female	50 Ω	85056D
F808TS	DC - 50 GHz	OSLT	2.4mm - Male AND Female	50 Ω	85056D
KWR42A	18 - 26.5 GHz	Waveguide	2.92mm-Male AND Female	50 Ω	K11644A

*1: Mechanical coaxial calibration kit naming rule

F/Y	Separate/Integrated
5/6/7/8/9	N/3.5/2.92/2.4/1.85 mm
0/1	50/75 Ohm
3/4/5/6/7/8/9	4.5/9/18/26.5/40/50/67 GHz
M/F/T	Male/Female/Both
E/S	Economy/Standard

*2: Mechanical Waveguide calibration kit naming rule

Band	EIA	Version	Frequency range
W	WR10	А	75 to 110 GHz
V	WR15	А	50 to 75 GHz
U	WR19	А	40 to 60 GHz
Q	WR22	А	33 to 50 GHz
R	WR28	А	26.5 to 40 GHz
К	WR42	А	18 to 26.5 GHz
Р	WR62	А	12.4 to 18 GHz
Х	WR90	А	8.2 to 12.4 GHz

*3: OSLT = Open + Short + Load + Through

F503 Series

The F503ME and F503FE economy 50Ω N type coaxial mechanical calibration kit include termination loads, open circuits, short circuits, and through adapters, specified from DC to 4.5 GHz.

The F503 series performance specifications are very similar to the Keysight 85032B/E mechanical calibration kit and it can be used as an approximate replacement of 85032B/E, or use the STD of 85032B/E in network analyzers.

Figure 1 F503 series

Performance

Model	Туре	Connector	Specification	
	Open	N Mala	DC – 2 GHz, Phase Deviation* $\leq \pm 0.65^{\circ}$	
	TypeConnectorOpenN - MaleShortN - MaleLoadN - MaleAdapterN - Male to N - MaleOpenN - FemaleShortN - Female	2 GHz – 4.5 GHz, Phase Deviation* $\leq \pm 1^{\circ}$		
	Short	N - Malo	DC - 2 GHz, Phase Deviation* $\leq \pm 0.65^{\circ}$	
F503ME	SHOL		2 GHz – 4.5 GHz, Phase Deviation* \leq ± 1°	
	Load	N - Male	DC – 1 GHz, Return Loss ≥ 46 dB	
	LUdu		1 GHz – 4.5 GHz, Return Loss ≥ 40 dB	
	Adapter	N – Male to N – Male	DC - 4.5 GHz, SWR ≤ 1.05 (Return Loss ≥ 32.3 dB)	
	Open	N - Female	DC - 2 GHz, Phase Deviation* $\leq \pm 0.65^{\circ}$	
	Open	N Terridie	2 GHz – 4.5 GHz, Phase Deviation* $\leq \pm 1^{\circ}$	
	Short	N - Male N - Male to N - Male N - Female N - Female	DC – 2 GHz, Phase Deviation* $\leq \pm 0.65^{\circ}$	
F503FE	31011		2 GHz – 4.5 GHz, Phase Deviation* $\leq \pm 1^{\circ}$	
	Lood	N - Fomalo	DC – 1 GHz, Return Loss ≥ 46 dB	
	LUdu	N - Female	1 GHz – 4.5 GHz, Return Loss ≥ 40 dB	
	Adapter	N - Female to N - Female	DC – 4.5 GHz, SWR \leq 1.05 (Return Loss \geq 32.3 dB)	

* Phase deviation from the nominal model as defined in the standards definitions (see Appendix A)

Impendence	50 Ω	Power	≤ 1 W
Interfaces Standard	IEC 60169-16 Grade 0	Durability	> 2000
Temperature	+ 15 °C ~ + 35 °C		

F603 Series

The F603ME and F603FE economy 50Ω 3.5mm type coaxial mechanical calibration kit include terminations loads, open circuits, short circuits, and through adapters, specified from DC to 4.5 GHz.

The F603 series performance specifications are very similar to the Keysight 85033E mechanical calibration kit and it can be used as an approximate replacement of 85033E, or use the STD of 85033E in network analyzers.

Figure 2 F603 series

Performance

Model	Туре	Connector	Specification	
	Open	3.5mm - Male	DC – 4.5 GHz, Phase Deviation* $\leq \pm 1^{\circ}$	
	Short	3.5mm - Male	DC – 4.5 GHz, Phase Deviation* $\leq \pm 1^{\circ}$	
F603ME	Load	3.5mm - Male	DC - 1 GHz, Return Loss ≥ 46 dB 1 GHz - 4.5 GHz, Return Loss ≥ 37.2 dB	
	Adapter	3.5mm - Male to 3.5mm - Male	DC – 4.5 GHz, SWR ≤ 1.05 (Return Loss ≥ 32.3 dB)	
	Open	3.5mm - Female	DC – 4.5 GHz, Phase Deviation* $\leq \pm 1^{\circ}$	
F603FE	Short	3.5mm - Female	DC – 4.5 GHz, Phase Deviation* $\leq \pm 1^{\circ}$	
	Load	3.5mm - Female	DC - 1 GHz, Return Loss ≥ 46 dB 1 GHz - 4.5 GHz, Return Loss ≥ 37.2 dB	
	Adapter	3.5mm - Female to 3.5mm - Female	DC – 4.5 GHz, SWR ≤ 1.05 (Return Loss ≥ 32.3 dB)	

* Phase deviation from the nominal model as defined in the standards definitions (see Appendix A)

Impendence	50 Ω	Power	\leq 1 W
Interfaces Standard	IEEE Std 287	Durability	> 2000
Temperature	+ 15 °C ~ + 35 °C		

F504 and Y504 Series

The F504MS and F504FS 50Ω N type coaxial mechanical calibration kit include termination loads, open circuits, short circuits, and through adapters, specified from DC to 9 GHz. The F504TS is a coaxial calibration kit consisting of F504MS and F504FS.

Y504MS shares the same parts and specs as F504MS, but in integrated exterior. So does Y504FS and F504FS.

The F504 and Y504 series performance specifications are very similar to the Keysight 85032F mechanical calibration kit and it can be used as an approximate replacement of 85032F, or use the STD of 85032F in network analyzers.

Figure 3 F504 series (left) and Y504 series (right)

Model		Туре	Connector	Specification
		Onon	N - Malo	DC – 3 GHz, Phase Deviation* $\leq \pm 0.65^{\circ}$
		Open		3 GHz - 9 GHz, Phase Deviation* ≤ \pm 1°
		Short	N - Malo	DC – 3 GHz, Phase Deviation* \leq ± 0.65°
	F504MS/	Short		3 GHz – 9 GHz, Phase Deviation* \leq ± 1°
	Y504MS			DC – 3 GHz, Return Loss ≥ 42 dB
		Load	N - Male	3 GHz – 6 GHz, Return Loss ≥ 38 dB
				6 GHz – 9 GHz, Return Loss ≥ 36 dB
		Adapter	N - Male to N - Male	DC – 9 GHz, SWR ≤ 1.06 (Return Loss ≥ 30.7dB)
F504TS		Open	N - Female	DC – 3 GHz, Phase Deviation* $\leq \pm 0.65^{\circ}$
	F504FS/ Y504FS			3 GHz - 9 GHz, Phase Deviation [*] ≤ \pm 1°
		Short	N - Female	DC – 3 GHz, Phase Deviation* $\leq \pm 0.65^{\circ}$
				3 GHz − 9 GHz, Phase Deviation* \leq ± 1°
		Load	N - Female	DC – 3 GHz, Return Loss ≥ 42 dB
				3 GHz – 6 GHz, Return Loss ≥ 38 dB
				6 GHz – 9 GHz, Return Loss ≥ 36 dB
		Adapter	N - Female to N - Female	DC - 9 GHz, SWR ≤ 1.06 (Return Loss ≥ 30.7dB)
	Adapter		N - Male to N - Female	DC - 9 GHz, SWR ≤ 1.06 (Return Loss ≥ 30.7dB)
	Wrench		N – 19mm	1.35 Nm

Performance

* Phase deviation from the nominal model as defined in the standards definitions (see Appendix A)

Impendence	50 Ω	Power	≤ 1 W
Interfaces Standard	IEC 60169-16 Grade 0	Durability	> 2000
Temperature	+ 15 °C ~ + 35 °C		

F505 Series

The F505MS and F505FS 50Ω N type coaxial mechanical calibration kit include termination loads, open circuits, short circuits, and through adapters, specified from DC to 18 GHz. The F505TS is a coaxial calibration kit consisting of F505MS and F505FS.

The F505 series performance specifications are very similar to the Keysight 85054D mechanical calibration kit and it can be used as an approximate replacement of 85054D, or use the STD of 85054D in network analyzers.

Figure 4 F505 series

rmance
rmance

Model		Туре	Connector	Specification
		Open	N - Male	DC - 18 GHz, Phase Deviation* $\leq \pm 1^{\circ}$
	EEUENC	Short	N - Male	DC -18 GHz, Phase Deviation* $\leq \pm 1^{\circ}$
	1 3031413	Load	N - Male	DC - 18 GHz, SWR \leq 1.048 (Return Loss \geq 32.6 dB)
		Adapter	N – Male to N – Male	DC - 18 GHz, SWR \leq 1.06 (Return Loss \geq 30.7 dB)
FEDETS	Open	N - Female	DC - 18 GHz, Phase Deviation* $\leq \pm 1^{\circ}$	
1 30313	EEOEES	Short	N - Female	DC - 18 GHz, Phase Deviation* $\leq \pm 1^{\circ}$
	F303F3	Load	N - Female	DC - 18 GHz, SWR ≤ 1.048 (Return Loss ≥ 32.6 dB)
		Adapter	N - Female to N - Female	DC - 18 GHz, SWR \leq 1.06 (Return Loss \geq 30.7 dB)
	Adapter		N - Male to N - Female	DC - 18 GHz, SWR \leq 1.06 (Return Loss \geq -30.7 dB)
	Wrench		N – 19mm	1.35 Nm

* Phase deviation from the nominal model as defined in the standards definitions (see Appendix A)

Impendence	50 Ω	Power	≤ 1 W
Interfaces Standard	IEC 60169-16	Durability	> 2000
Temperature	+ 15 °C ~ + 35 °C		

F604 Series

The F604MS and F604FS 50Ω 3.5mm type coaxial mechanical calibration kit include termination loads, open circuits, short circuits, and through adapters, specified from DC to 9 GHz. The F604TS is a coaxial calibration kit consisting of F604MS and F604FS.

The F604 series performance specifications are very similar to the Keysight 85033E mechanical calibration kit and it can be used as an approximate replacement of 85033E, or use the STD of 85033E in network analyzers.

Figure 5 F604 series

Model		Туре	Connector	Specification
		Open	3.5mm - Male	DC – 9 GHz, Phase Deviation* $\leq \pm 1^{\circ}$
F604TS		Short	3.5mm - Male	DC – 9 GHz, Phase Deviation* $\leq \pm 1^{\circ}$
	F604MS	Load	3.5mm - Male	DC - 2 GHz, Return Loss ≥ 46 dB 2 GHz - 9 GHz, Return Loss ≥ 40 dB
		Adapter	3.5mm - Male to 3.5mm - Male	DC - 6 GHz, SWR ≤ 1.04 6 GHz - 9 GHz, SWR ≤ 1.06
	F604FS	Open	3.5mm - Female	DC – 9 GHz, Phase Deviation* $\leq \pm 1^{\circ}$
		Short	3.5mm - Female	DC - 9 GHz, Phase Deviation* $\leq \pm 1^{\circ}$
		Load	3.5mm - Female	DC - 2 GHz, Return Loss ≥ 46 dB 2 GHz - 9 GHz, Return Loss ≥ 40 dB
		Adapter	3.5mm - Female to	DC - 6 GHz, SWR ≤ 1.04
			3.5mm - Female	6 GHz - 9 GHz, SWR ≤ 1.06
	Adapter		3.5mm - Male to	DC – 6 GHz, SWR ≤ 1.04
	Addpter		3.5mm - Female	6 GHz – 9 GHz, SWR ≤ 1.06
	Wrench		3.5mm - 8mm	0.9 Nm

Performance

* Phase deviation from the nominal model as defined in the standards definitions (see Appendix A)

Impendence	50 Ω	Power	≤ 1 W
Interfaces Standard	IEEE Std 287	Durability	> 2000
Temperature	+ 15 °C ~ + 35 °C		

F606 and Y606 Series

The F606MS and F606FS 50Ω 3.5mm type coaxial mechanical calibration kit include termination loads, open circuits, short circuits, and through adapters, specified from DC to 26.5 GHz. The F606TS is a coaxial calibration kit consisting of F606MS and F606FS.

Y606MS shares the same parts and specs as F606MS, but in integrated exterior. So does Y606FS and F606FS.

The F606 and Y606 series performance specifications are very similar to the Keysight 85052D mechanical calibration kit and it can be used as an approximate replacement of 85052D, or use the STD of 85052D in network analyzers.

Figure 6 F606 series (left) and Y606 series (right)

Model		Туре	Connector	Specification
			0.5 N.4	DC - 3 GHz, Phase Deviation* $\leq \pm 0.65^{\circ}$
		Open	3.5mm - Male	$3 \text{ GHz} - 8 \text{ GHz}$, Phase Deviation* $\leq \pm 1.2^{\circ}$
				8 GHz - 26.5 GHz, Phase Deviation* $\leq \pm 2^{\circ}$
				DC – 3 GHz, Phase Deviation* $\leq \pm 0.65^{\circ}$
		Short	3.5mm - Male	3 GHz – 8 GHz, Phase Deviation* $\leq \pm$ 1°
	F606MS			8 GHz-26.5 GHz, Phase Deviation* $\leq \pm 1.75^{\circ}$
				DC – 8 GHz, Return Loss ≥ 38 dB
		Load	3.5mm - Male	8 GHz - 20 GHz, Return Loss ≥ 36 dB
				20 GHz – 26.5 GHz, Return Loss ≥ 34 dB
		Adapter	3.5mm - Male to	$DC = 24 E C U_{7} S W D < 1.09$
			3.5mm - Male	DC - 20:5 GHZ, SWR ≥ 1.08
F606TS		Open	3.5mm - Female	DC – 3 GHz, Phase Deviation* $\leq \pm 0.65^{\circ}$
				3 GHz – 8 GHz, Phase Deviation* $\leq \pm 1.2^{\circ}$
				8 GHz – 26.5 GHz, Phase Deviation* $\leq \pm 2^{\circ}$
		Short		DC – 3 GHz, Phase Deviation* $\leq \pm 0.65^{\circ}$
	F606FS		3.5mm - Female	3 GHz – 8 GHz, Phase Deviation* \leq ± 1°
				8 GHz–26.5 GHz, Phase Deviation* $\leq \pm 1.75^{\circ}$
		Load		DC – 8 GHz, Return Loss ≥ 38 dB
			3.5mm - Female	8 GHz – 20 GHz, Return Loss ≥ 36 dB
				20 GHz – 26.5 GHz, Return Loss ≥ 34 dB
			3.5mm - Female to	
		Adapter	3.5mm - Female	DC - 26.5 GHZ, SWR ≤ 1.08
	Adaptor		3.5mm - Male to	DC - 26 5 CHz SWD < 1.08
	Adapter		3.5mm - Female	DC 20.3 CHZ, 3WWK ≥ 1.00
	Wrench		3.5mm - 8mm	0.9 Nm

Performance

* Phase deviation from the nominal model as defined in the standards definitions (see Appendix A)

Model	Туре	Connector	Specification	
	Open	3.5mm - Male	DC – 26.5 GHz, Phase Deviation* $\leq \pm 3^{\circ}$	
Y606MS	Short	3.5mm - Male	DC - 26.5 GHz, Phase Deviation* $\leq \pm 2.8^{\circ}$	
	Load	3.5mm - Male	DC - 26.5 GHz, SWR ≤ 1.07	
	Adapter	3.5mm - Male to 3.5mm - Male	DC – 26.5 GHz, SWR ≤ 1.12	
	Wrench	3.5mm - 8mm	0.9 Nm	
	Open	3.5mm - Female	DC - 26.5 GHz, Phase Deviation* $\leq \pm 3^{\circ}$	
	Short	3.5mm - Female	DC - 26.5 GHz, Phase Deviation* $\leq \pm 2.8^{\circ}$	
Y606FS	Load	3.5mm - Female	DC - 26.5 GHz, SWR ≤ 1.07	
	Adapter	3.5mm - Female to 3.5mm - Female	DC - 26.5 GHz, SWR ≤ 1.12	
	Wrench	3.5mm - 8mm	0.9 Nm	

* Phase deviation from the nominal model as defined in the standards definitions (see Appendix A)

Impendence	50 Ω	Power	≤ 0.5 W
Interfaces Standard	IEEE Std 287	Durability	> 2000
Temperature	+15 °C ~ + 35 °C		

F707 and Y707 Series

The F707TS 50 Ω 2.92mm type coaxial mechanical calibration kit include termination loads, open circuits, short circuits and through adapters in both sexes, specified from DC to 40 GHz.

Y707MS is 2.92mm type integrated calibration kit with male connectors, Y707MS is 2.92mm type integrated calibration kit with female connectors.

The F707 series performance specifications are very similar to the Maury 8770S and the Y707 series performance specifications are very similar to the Maury 8770D, so they can be used as an approximate replacement.

Figure 7 F707 series (left) and Y707 series (right)

Model	Туре	Connector	Specification	
	Open	2.92mm - Male	$DC = 40 CHz$ Dhase Deviation* $< \pm 4^{\circ}$	
	Open	2.92mm - Female		
	Short	2.92mm - Male	$DC = 40 \text{ GHz}$ Phase Deviation* $\leq \pm 4.5^{\circ}$	
	SHOT	2.92mm - Female		
	Load	2.92mm - Male	DC = 40 GHz SW/P < 1.052	
F707TS	Ludu	2.92mm - Female	$DC = 40 \text{ GHz}, 500\text{ K} \le 1.05\text{ Z}$	
	Adapter	2.92mm - Male to		
		2.92mm - Male		
		2.92mm - Female to	$DC = 40 CU_{7} SWD < 1.12$	
		2.92mm - Female	$DC = 40 \text{ GHz}, SWR \ge 1.12$	
		2.92mm - Male to		
		2.92mm - Female		
	Wrench	8mm	0.9 Nm	

Performance

* Phase deviation from the nominal model as defined in the standards definitions (see Appendix A)

Model	Туре	Connector	Specification	
Y707MS	Open	2.92mm - Male	DC – 40 GHz, Phase Deviation* $\leq \pm 4^{\circ}$	
	Short	2.92mm - Male	DC - 40 GHz, Phase Deviation* $\leq \pm 3.5^{\circ}$	
	Load	2.92mm - Male	DC - 40 GHz, SWR ≤ 1.11	
	Adapter 2.92mm - Male to 2.92mm - Male		DC - 40 GHz, SWR ≤ 1.18	
	Wrench	8mm	0.9 Nm	
	Open	2.92mm - Female	DC - 40 GHz, Phase Deviation* $\leq \pm 4^{\circ}$	
	Short	2.92mm - Female	DC - 40 GHz, Phase Deviation* $\leq \pm 3.5^{\circ}$	
Y707FS	Load	2.92mm - Female	DC - 40 GHz, SWR ≤ 1.11	
	Adapter	2.92mm - Female to 2.92mm - Female	DC - 40 GHz, SWR ≤ 1.18	
	Wrench	8mm	0.9 Nm	

* Phase deviation from the nominal model as defined in the standards definitions (see Appendix A)

Impendence	50 Ω	Power	\leq 0.5 W
Temperature	+15 °C ~ + 35 °C	Durability	> 2000

F808 and Y808 Series

The F808MS and F808FS 50Ω 2.4mm type coaxial mechanical calibration kit include termination loads, open circuits, short circuits, and through adapters, specified from DC to 50 GHz. The F808TS is a coaxial calibration kit consisting of F808MS and F808FS.

Y808MS shares the same parts and specs as F808MS, but in integrated exterior. So does Y808FS and F808FS.

The F808 and Y808 series performance specifications are very similar to the Keysight 85056D mechanical calibration kit and it can be used as an approximate replacement of 85056D, or use the STD of 85056D in network analyzers.

Figure 8 F808 series (left) and Y808 series (right)

Model		Туре	Connector	Specification
				DC – 2 GHz, Phase Deviation* $\leq \pm 0.75^{\circ}$
		Open	2.4mm - Male	2 GHz – 20 GHz, Phase Deviation* $\leq \pm 1.5^{\circ}$
				20 GHz – 50 GHz, Phase Deviation* \leq ± 2.5°
				DC – 2 GHz, Phase Deviation* $\leq \pm 0.75^{\circ}$
		Short	2.4mm - Male	2 GHz – 20 GHz, Phase Deviation* \leq ± 1.5°
	F808MS			20 GHz – 50 GHz, Phase Deviation* $\leq \pm 2.5^{\circ}$
				DC – 4 GHz, Return Loss ≥ 40 dB
		Load	2.4mm - Male	4 GHz - 20 GHz, Return Loss ≥ 34 dB
				20 GHz – 50 GHz, Return Loss ≥ 32 dB
		Adapter	2.4mm - Male to	DC - 50 GHz SWP < 1.12
			2.4mm - Male	
	F808FS	Open	2.4mm - Female	DC – 2 GHz, Phase Deviation* $\leq \pm 0.75^{\circ}$
F808TS				2 GHz – 20 GHz, Phase Deviation* \leq ± 1.5°
				20 GHz – 50 GHz, Phase Deviation* ≤ \pm 2.5°
		Short	2.4mm - Female	DC – 2 GHz, Phase Deviation* $\leq \pm 0.75^{\circ}$
				2 GHz – 20 GHz, Phase Deviation* \leq ± 1.5°
				20 GHz – 50 GHz, Phase Deviation* $\leq \pm 2.5^{\circ}$
		Load		DC – 4 GHz, Return Loss ≥ 40 dB
			2.4mm - Female	4 GHz – 20 GHz, Return Loss ≥ 34 dB
				20 GHz – 50 GHz, Return Loss ≥ 32 dB
		Adapter	2.4mm - Female to	DC - 50 GHz SWP < 1.12
		Adapter	2.4mm - Female	
	Adapter		2.4mm - Male to	DC - 50 GHz SWP < 1.12
			2.4mm - Female	
	Wrench		8mm	0.9 Nm

Performance

* Phase deviation from the nominal model as defined in the standards definitions (see Appendix A)

Model	Туре	Connector	Specification
	Open	2.4mm - Male	DC – 50 GHz, Phase Deviation* $\leq \pm 3.8^{\circ}$
Y808MS	Short	2.4mm - Male	DC - 50 GHz, Phase Deviation* ≤ ± 3°
	Load	2.4mm - Male	DC - 50 GHz, SWR ≤ 1.1
	Adapter	2.4mm - Male to 2.4mm - Male	DC - 50 GHz, SWR ≤ 1.18
	Wrench	8mm	0.9 Nm
	Open	2.4mm - Female	DC – 50 GHz, Phase Deviation* $\leq \pm 3.8^{\circ}$
	Short	2.4mm - Female	DC - 50 GHz, Phase Deviation* ≤ ± 3°
Y808FS	Load	2.4mm - Female	DC - 50 GHz, SWR ≤ 1.1
	Adapter	2.4mm - Female to 2.4mm - Female	DC - 50 GHz, SWR ≤ 1.18
	Wrench	8mm	0.9 Nm

* Phase deviation from the nominal model as defined in the standards definitions (see Appendix A)

Impendence	50 Ω	Power	\leq 0.5 W
Temperature	+15 °C ~ + 35 °C	Durability	> 2000

KWR42A

The KWR42A precise K-band waveguide mechanical calibration kit contains K-band load, K-band short, $1/8\lambda$ waveguide line, $1/4\lambda$ waveguide line and $3/8\lambda$ waveguide line, specified from 17.6 GHz to 26.7 GHz. For measurement convenience, the KWR42A includes 2.92mm coax-to-waveguide converters and some fasteners like screws, nuts, nut collars, position bolts, etc.

The KWR42A performance specifications are very similar to the Keysight K11644A mechanical calibration kit and it can be used as an approximate replacement of K11644A, or use the STD of K11644A in network analyzers.

Figure 9 KWR42A

Performance

Model	Туре	Connector	F min (MHz)	F max (MHz)	Specification
KWR42A	Short	Waveguide	14047	28094	Delay = 0, Loss = 0
	Load	Waveguide	14047	28094	Delay = 0, Loss = 0
	1/8λ Line	Waveguide	14047	28094	Delay = 0.751E-11 Sec, Loss = 2.75 Gohm/Sec
	1/4λ Line	Waveguide	14047	28094	Delay = 1.502E-11 Sec, Loss = 2.75 Gohm/Sec
	3/8λ Line	Waveguide	14047	28094	Delay = 2.253E-11 Sec, Loss = 2.75 Gohm/Sec
	Coax-to-waveguide	2.92mm - Female to Waveguide	14047	28094	VSWR≤1.25;IL≤0.5dB
	converter	2.92mm - Male to Waveguide	14047	28094	VSWR≤1.25;IL≤0.5dB
	Fastener	Screw M3*12, Screw	/ M3*16, Screw M	13*20, Nut M3, N	ut collar M3, Position bolt

Impendence	50 Ω	Power	≤ 0.5 W
Temperature	+15 °C ~ + 35 °C	Durability	> 2000

Appendix A Calibration Kit Standards Definitions

Model	Туре	C0 F(e-15)	C1 F(e-27)/Hz	C2 F(e-36)/Hz^2	C3 F(e-45)/Hz^3	L0 H(e-12)	L1 H(e-24)/Hz	L2 H(e-33)/Hz^2	L3 H(e-42)/Hz^3	Delay (pSec)	Loss (GΩ/Sec)	Z0 (Ω)
F503ME	Open	62.14	-143.07	82.92	0.76					17.4	0.7	50
	Short					0	0	0	0	17.8	2.1002	50.209
	Load									0	0.7	50
	Thru									0	0.7	50
	Open	119.09	-36.955	26.258	5.5136					0	0.7	50
E503EE	Short					0	0	0	0	0.093	0.7	49.992
1 3031 L	Load									0	0.7	50
	Thru									0	0.7	50
	Open	49.433	-310.13	23.168	-0.15966					29.243	2.2	50
EFUSIVE	Short					2.0765	-108.54	2.1705	-0.01	31.785	2.36	50
10031412	Load									0	2.3	50
	Thru									0	2.3	50
	Open	49.433	-310.13	23.168	-0.15966					29.243	2.3	50
E603EE	Short					2.0765	-108.54	2.1705	-0.01	31.785	2.36	50
10031	Load									0	0	50
	Thru									0	2.3	50
	Open	89.939	2536.8	-264.99	13.4					40.856	0.93	50
F504MS	Short					3.3998	-496.4808	34.8314	-0.7847	45.955	1.087	49.992
Y504MS	Load									0	0	50
	Thru									0	0	50

Model	Туре	C0 F(e-15)	C1 F(e-27)/Hz	C2 F(e-36)/Hz^2	C3 F(e-45)/Hz^3	L0 H(e-12)	L1 H(e-24)/Hz	L2 H(e-33)/Hz^2	L3 H(e-42)/Hz^3	Delay (pSec)	Loss (GΩ/Sec)	Z0 (Ω)
F504FS	Open	89.939	2536.8	-264.99	13.4					41.17	0.93	50
	Short					3.3998	-496.4808	34.8314	-0.7847	45.955	1.087	49.99
Y504FS	Load									0	0	50
	Thru									0	0	50
	Open	89.939	2536.7999	-264.99	13.4					57.993	0.93	50
EEUEWS	Short					0.7653	459.8799	-52.429	1.5846	63.078	1.1273	50
1 3031413	Load									0	0	50
	Thru									0	2.2	50
	Open	104.13	-1943.4008	144.62	2.2258					22.905	0.93	50
ESUZES	Short					-0.1315	606.2089	-68.405	2.0206	27.99	1.3651	50
1 3031 3	Load									0	0	50
	Thru									0	2.2	50
	Open	49.433	-310.13	23.168	-0.15966					29.243	2.2	50
E604MS	Short					2.0765	-108.54	2.1705	-0.01	31.785	2.36	50
10041413	Load									0	2.3	50
	Thru									0	2.3	50
	Open	49.433	-310.13	23.168	-0.15966					29.243	2.2	50
E604ES	Short					2.0765	-108.54	2.1705	-0.01	31.785	2.36	50
100415	Load									0	0	50
	Thru									0	2.3	50

Model	Туре	C0 F(e-15)	C1 F(e-27)/Hz	C2 F(e-36)/Hz^2	C3 F(e-45)/Hz^3	L0 H(e-12)	L1 H(e-24)/Hz	L2 H(e-33)/Hz^2	L3 H(e-42)/Hz^3	Delay (pSec)	Loss (GΩ/Sec)	Z0 (Ω)
F606MS Y606MS	Open	49.433	-310.13	23.168	-0.15966					29.243	2.2	50
	Short					2.0765	-108.54	2.1705	-0.01	31.785	2.36	50
	Load									0	0	50
	Thru									0	0	50
	Open	49.433	-310.13	23.168	-0.15966					29.243	2.2	50
F606FS	Short					2.0765	-108.54	2.1705	-0.01	31.785	2.36	50
Y606FS	Load									0	0	50
	Thru									0	0	50
	Open M	44.1578	71.4204	-0.1716	0.2048					14.8487	3.39	50
	Open F	42.9684	729.336	-31.7551	0.6628					14.8487	3.46	50
E707TS	Short M					8.7413	-1036.9	41.5223	-0.5055	16.6963	2.5639	50
170713	Short F					-11.2831	1910.57	-85.3145	1.0864	16.6963	2.0059	50
	Load									0	0	50
	Thru									0	0	50
	Open	47.5	0	3.8	0.19					14.982	1.8	50.8
VZUZNAS	Short					0	0	0	0	16.83	1.8	50
1101113	Load									0	0	50
	Thru									0	0	50

Model	Туре	C0 F(e-15)	C1 F(e-27)/Hz	C2 F(e-36)/Hz^2	C3 F(e-45)/Hz^3	L0 H(e-12)	L1 H(e-24)/Hz	L2 H(e-33)/Hz^2	L3 H(e-42)/Hz^3	Delay (pSec)	Loss (GΩ/Sec)	Z0 (Ω)
V70750	Open	45.5	100	0.3	0.21					14.883	1.8	50
	Short					0	0	0	0	16.73	1.8	50
1/0/F3	Load									0	0	50
	Thru									0	0	50
	Open	29.722	165.78	-3.5386	0.071					20.837	3.23	50
F808MS	Short					2.1636	-146.35	4.0443	-0.0363	22.548	3.554	50
Y808MS	Load									0	0	50
	Thru									0	3.554	50
	Open	29.72	165.78	-3.5385	0.071					20.837	3.23	50
F808FS	Short					2.1636	-146.35	4.0443	-0.0363	22.548	3.554	50
Y808FS	Load									0	0	50
	Thru									0	3.554	50
	Short					0	0	0	0	0	0	1
	Load									0	0	1
KWR42A	1/8λ Line									0.751	2.75	1
	1/4λ Line									1.502	2.75	1
	3/8λ Line									2.253	2.75	1

Appendix B Derivation of Coaxial Calibration Model

The model definition of coaxial mechanical calibration kit is shown in Figure 10.

Figure 10 Model definition of coaxial mechanical calibration kit

Where:

- > Z_{in} = the input impedance of transmission line
- > Z_{out} = the output impedance of transmission line
- > Delay = the dispersion free, TEM mode, electrical delay defined by:

$$Delay = \frac{l}{v}$$

Where l is the physical offset length of transmission line and v is the speed of light in transmission medium.

> Loss = the propagation loss per unit length of transmission line at a normalization frequency of 1 GHz multiplied by the speed of light in the transmission medium, and the unit is $G\Omega$ /Sec. For coaxial mechanical calibration kit, if the log magnitude S_{11dB} of Short, Open, Load at 1GHz is obtained, or the log magnitude S_{21dB} of Through at 1GHz is obtained, Loss can be estimated as:

$$Loss = -\frac{ln(10) S_{11dB}}{20} (\frac{Z_0}{Delay})$$
$$Loss = -\frac{ln(10) S_{21dB}}{10} (\frac{Z_0}{Delay})$$

> Z_c = the characteristic impedance of transmission line, given as:

$$Z_{C} = Z_{0} + (1 - j)(\frac{Loss}{4\pi f})\sqrt{\frac{f}{10^{9}}}$$

Where Z_0 is the lossless characteristic impedance of transmission line and f is the frequency in Hz.

> Z_T = the termination impedance. For Short and Open, there are:

$$Z_{T(Short)} = j2\pi f L_{Short} = j2\pi f (L_0 + L_1 f + L_2 f^2 + L_3 f^3)$$
$$Z_{T(Open)} = \frac{1}{j2\pi f C_{Open}} = \frac{1}{j2\pi f (C_0 + C_1 f + C_2 f^2 + C_3 f^3)}$$

- > $L_0 \sim L_3$ = the third order polynomial capacitance model
- > $C_0 \sim C_3$ = the third order polynomial inductance model
- $ightarrow R_L$ = the resistance model

According to the transmission line model, the flowgraph representation of coaxial mechanical calibration kit is shown in Figure 11.

Figure 11 Flowgraph representation of coaxial mechanical calibration kit

Where:

> γ = the propagation constant of the line, defined by:

 $\gamma = \alpha + j\beta$

> α = the propagation loss constant of the line, β = the propagation phase constant of the line, given as:

$$\alpha l = \frac{(Loss)(Delay)}{2Z_0} \sqrt{\frac{f}{10^9}}$$
$$\beta l = (2\pi f \times Delay) + al$$

> Γ_1 = input reflection coefficient of transmission line, Γ_2 = output reflection coefficient of transmission line, given as:

$$\Gamma_1 = \frac{Z_c - Z_{in}}{Z_c + Z_{in}}$$
$$\Gamma_2 = \frac{Z_{out} - Z_c}{Z_{out} + Z_c}$$

Let $Z_{in} = Z_{out} = Z_0$ we get:

$$\Gamma_1 = -\Gamma_2 = \frac{Z_c - Z_0}{Z_c + Z_0}$$

> Γ_T = terminal reflection coefficient, given as:

$$\Gamma_T = \frac{Z_T - Z_0}{Z_T + Z_0}$$

Based on the flowgraph in Figure 11, the formula of the input reflection coefficient can be derived, that is, the one-port response of the coaxial mechanical calibration kit:

$$\Gamma_{\rm i} = \frac{\Gamma_{\rm 1}(1 - e^{-2\gamma l} - \Gamma_{\rm 1}\Gamma_{\rm T}) + \Gamma_{\rm T}e^{-2\gamma l}}{1 - \Gamma_{\rm 1}(\Gamma_{\rm 1}e^{-2\gamma l} + \Gamma_{\rm T}(1 - e^{-2\gamma l}))}$$

About SIGLENT

SIGLENT is an international high-tech company, concentrating on R&D, sales, production and services of electronic test & measurement instruments.

SIGLENT first began developing digital oscilloscopes independently in 2002. After more than a decade of continuous development, SIGLENT has extended its product line to include digital oscilloscopes, isolated handheld oscilloscopes, function/arbitrary waveform generators, RF/MW signal generators, spectrum analyzers, vector network analyzers, digital multimeters, DC power supplies, electronic loads and other general purpose test instrumentation. Since its first oscilloscope was launched in 2005, SIGLENT has become the fastest growing manufacturer of digital oscilloscopes. We firmly believe that today SIGLENT is the best value in electronic test & measurement.

Headquarters:

SIGLENT Technologies Co., Ltd Add: Bldg No.4 & No.5, Antongda Industrial Zone, 3rd Liuxian Road, Bao'an District, Shenzhen, 518101, China Tel: + 86 755 3688 7876 Fax: + 86 755 3359 1582 Email: sales@siglent.com Website: int.siglent.com

North America:

SIGLENT Technologies NA, Inc Add: 6557 Cochran Rd Solon, Ohio 44139 Tel: 440-398-5800 Toll Free:877-515-5551 Fax: 440-399-1211 Email: support@siglentna.com Website: www.siglentna.com

Europe:

SIGLENT Technologies Germany GmbH Add: Staetzlinger Str. 70 86165 Augsburg, Germany Tel: +49(0)-821-666 0 111 0 Fax: +49(0)-821-666 0 111 22 Email: info-eu@siglent.com Website: www.siglenteu.com

Malaysia:

SIGLENT Technologies (M) Sdn.Bhd Add: NO.6 Lorong Jelawat 4 Kawasan Perusahaan Seberang Jaya 13700, Perai Pulau Pinang Tel: 006-04-3998964 Email: sales@siglent.com Website: int.siglent.com Follow us on Facebook: SiglentTech

